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SUMMARY

The integral form of the velocity potential and pressure distribu-

tion for a wing with supersonic leading edges and subsonic side edges

in supersonic flow is derived herein for a wing undergoing any arbi-

trary time-dependent deformations. The expressions are simplified by

assuming harmonic deformations and then expanding the integrand of the

velocity potential to the third power of frequency. The special case

is treated for which the side edge is parallel to the free stream and

the oscillations are such that the amplitude of wing distortion can be

represented by a polynomial of any desired degree in the span coordinate

and third degree in the chordwise coordinate.

The equations are further reduced to the special cases of a rigid

wing oscillating in pitch and translation and of a rigid wing in a sinus-

oidal gust_ the results of which are presented in an appendix. Sample

calculations are made for the total lift on a delta and rectangular wing

and the results are presented in a table where a comparison is made with

the exact values from linearized potential-flow theory.

INTRODUCTION

Time-dependent aerodynamic forces have been a subject of continuing

theoretical development for many years. Most effort has been directed

toward methods of predicting air forces due to simple harmonic motion

since these methods can be applied directly to aircraft flutter problems.

With suitable operations these harmonically varying forces, which were

developed for application to flutter, can be used in the harmonic anal-

ysis of airplane response to continuous atmospheric turbulence. Thus,

the accumulated knowledge of unsteady air forces due to harmonic motion

of wings at various speeds may be applied to both flutter and response

to turbulence.



The lift and momentfor rigid wings of various planforms under-
going harmonic oscillations have been derived. (For example, see refs. 1
to lO. ) The lift and momenton certain rigid restrained wings subjected
to continuous sinusoidal gusts (or turbulence) have been presented in
references ll to 13. The results of references 1 to 13 have been com-
piled in reference 14 together with the unsteady air forces for addi-
tional planforms. A more complete llst of references is given in the
bibliography of reference 15.

The aerodynamic forces for application to nonrigid or deforming
wings are available for special cases. For example, if the distorted
shape of the wing can be represented by a quadratic equation in the chord-
wise and spanwise coordinates, references 16 to 19 maybe used in the
supersonic speed range. In reference 16, the velocity potential for a
triangular wing with subsonic leading edges undergoing general second-
degree forms of harmonic distortion in both the spanwise and chordwise
coordinates is presented. The velocity potential therein is expanded
to the third power of the oscillation frequency in order to obtain the
forces and moments. Reference 17 is an extension of reference 16 wherein
a higher degree of wing distortion is considered and the velocity poten-
tial is expandedto the fifth power of the frequency. In reference 18,
the generalized forces for a harmonically oscillating rectangular wing
are given. The downwashdistribution is assumedto be a general poly-
nomial in the spanwise and chordwise coordinates. In reference 19 a
strip theory technique is used to obtain the generalized forces on a
delta wing with supersonic leading edges. This procedure gives the
exact pressure distribution for arbitrary chordwise variation of dis-
placements and, at most, linear variation of displacements in the span
direction.

In the present paper an integral expression is given for the pres-
sure distribution on a wing with swept supersonic leading edges and
arbitrarily swept subsonic side edges with an arbitrary time-dependent
downwashdistribution. The trailing edge is also arbitrary but must be
supersonic at all points. The expression is simplified by considering
the special case for a wing undergoing harmonic motion with side edge
parallel to free stream. The deformed shape of the wing is represented
by a polynomial of any desired degree in the span direction and third
degree in the chord direction. The aerodynamic forces are obtained by
expanding the equations to the third power of frequency. Reduction of
the equations for application to a rigid wing oscillating in pitch and
translation and to a rigid wing in a sinusoidal gust is presented in an
appendix.
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a

As

b

Is

Jn(X)

k

Kn

z(x,y)

speed of sound

normalizing factors used in equation (46) to define displace-

ment of wing

wing span

sinking velocity of wing

quantity defined by equation (D3)

Bessel function of first kind

reduced frequency

normalizing factor (see eq. (42))

lift distribution due to downwash_

w = eimt _ Kn_- _) n _, AsyS

n--O s=O

quantity defined by equation (47)

M

n,s,r

Ps

Ap

Mach number

integers

quantity defined by equation (DIO)

local pressure difference

amplitude of pressure coefficient due to downwash,

w = Knei_tx n 5(y-_)



q

Qs

ro, rl, r2

r3, r4

Rs

R(y)

t',t,t 2

tI

u nl
: _(y + n)

V

W

w O, wI

x'jy',z'

xl,Y I, zI

x,y, z

= M_-l

q"q'ql

dynamic pressure, pV2/2

quantity defined by equation (D4)

quantities defined by equations (29)

quantities defined by equations (41)

quantities defined by equation (D9)

quantity defined by equation (37)

time

transformed time (see eqs. (5))

free-stream velocity

vertical velocity on surface of wing, positive up

amplitude of vertical velocity associated with the Dirac
delta function

rectanguzlar coordinates fixed to wing

transformed coordinates (see eqs. (5))

rectangular coordinate system fixed to apex of wing

angle of attack

Dirac delta function

position on y', y, and Yl axes where downwash is applied,

respectively

slope of leading edge of wing



A

P

_,X,_

tO

=M__2_

V_ 2

_i,_2

times slope of side edge of wing

density

velocity potentials

circular frequency

coordinates

dummy variable

ANALYSIS

Introductory Remarks

As a first step in the analysis, an integral expression is developed

for the velocity potential associated with a downwash strip of Dirac

delta form on a wing in supersonic flow with swept supersonic leading and

trailing edges and subsonic side edges. By superimposing these strips

over the wing planform, a general expression for the generalized forces

is derived for any arbitrary time-dependent downwash distribution. These

equations, although complicated, can be programed on the modern-day high-

speed digital computers.

As a next step in the analysis, a simplification is made of the

above-mentloned expressions by assuming simple harmonic motion. The

velocity potential and pressure coefficients associated with the harmoni-

cally oscillating strip are then presented. These expressions are fur-

ther simplified so as to pertain to the special case where the side edge

is parallel to the free stream. The pressure coefficients are then

expanded in powers of frequency and by superimposing the downwash strips

over the wing planform the pressure distribution for various wing dis-

tortions is obtained.

The method used is that of Gardner (ref. 20) which reduces the non-

steady finite-wing problem to two "steady" finite-wing problems. Without

deriving the method 3 its essential points are given herein.
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Velocity Potential and Pressure Coefficients Associated

With a Downwash Strip of Dirac Delta Form

The linearized boundary-value _roblem.- The differential equation

of the propagation of disturbances that must be satisfied by the velocity

potential is (when referred to a moving coordinate system x',y',z')

8x ,2 _y. ,2 _z ,2
(i)

where

¢ --¢(x',y',z',t')

The boundary conditions that must be satisfied by the velocity poten-
tial are

_(x',y',O,t') = 0 (2)

ahead of the wing

_---) = V _z___'+ _z___L= w(x',y',t ')
8z' z'-_O _x' _t'

(3)

on the wing.

The wing planform for which the velocity potentials and pressure

distributions are to be obtained is shown in figure i. The numbered

regions on this figure will be discussed later in the paper. A conven-

ient planform to analyze is shown in sketch 1 where by means of various

transformations and superposition techniques the results can be applied

to the planform shown in figure i. The downwash associated with the

planform in sketch 1 is assumed to be

w(x',y',t') = Wo(x',t') 5(y'-h') (4)

where 5(y') is the Dirac delta and is defined as

_ _(y')dy' : i
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and

_ F(y')5(y'-y)_' = F(y)

and the slope of the side edge is expressed as A/_ for convenience.

//

Wing side edgeh

y! _ _!

X !

y'
ng leading edge

Sketch i

Although this downwash distribution may appear to be physically unreason-

able 3 it will be shown in appendix A that the results utilizing it reduce
to known functions.

Transformation of the boundary-value problem.- With a transforma-

tion similar to that employed in reference 20,

xl =ay' +x'/_ _

_ A 2

Ax'/_ + y'
Yl =

__ A 2

Mx' - _2at'

t I =

zI = z'

_i = _' J

(_)
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equations (1) to (4) become

CXlXl- _yly I - CZlZ 1 - Ctlt I = 0
(6)

ahead of the wing

_-0 (xl< aY1) (7)

where

(Yl> o) (8)

5._.I - Ax I
W(Xl, Yl, t_ = Wl(Xl, Yl, tl) (9b)

Wl(Xl'Yl'tl) = w0_(Xl-AYl)__ A2 '_L_=_(x___)__t_1
(9c)

The wing in the transformed coordinate system is shown in sketch 2_
where the shaded area of sketch 1 transforms into the shaded area of

sketch 2, and the side edge and leading edge become Yl = 0 and

xI =Ayl, respectively.



Wingylside=0edge_

-- Yl

_ng e_e

_///_7_ W(Xl _Yl _tl ) i

z///////7//////////,
xI

Sketch 2

Gardner's method consists of introducing the variable _i

function _(_iJxl,Yl_Zl,ti) defined for all _i >= 0a potential

that _ satisfies the following two differential equations:

and constructing

such

_i_m - _YlYl - _ZlZl = o (lO)

_XlX I - _tlt I - _I_ I = 0

(ii)

and the conditions

- o (12)

ahead of the wing and

()@Zl Zl=O =X(_l'xl'yl'tl)

(Yi > o) (i3)

and where

X(O_Xl_Yl, tl) = W(Xl, Yl,tl ) (14)

and W(Xl_Yl,tl) is defined by equation (9b). It can be seen that, by

adding equations (i0) and (ii), the resulting equation has the same form

as equation (6). Similarly, equations (12) and (7) have the same form

and equations (13) and (14) reduce to equation (8) as _i approaches O.

Consequently, the velocity potential is found by setting _i = 0 such

that



i0

 (xl,Yl,zl,tl)=*(O,xl,Yl,zl,tl)

Differentiating equation (Ii) with respect to zI

new potential function X such that

(_I) = X(_l_ xl'Yl'tl)

Zl-_O

equation (ii) becomes

XXlXl - Xtltl - X_I_I

with the boundary conditions

ahead of the wing and

X =0

X = W(Xl,Yl,tl)

=0

(_5)

and defining a

for _i = O. This will be considered the first boundar_j-value problem.
The second boundary-value problem consists of equations (i0)_ (12),

and (13) and is restated here for convenience

(16)

(17)

ahead of wing and

_i_ I - _yly I - @ZlZ I = 0

(18)

(_Zl)zl= 0 : X(_l,Xl,Yl,tl) (22)

for y > O. It can be seen that the solution of equations (17) to (19)

becomes a boundary condition for equations (20) to (22).

Solution for X-function.- The boundary-value problem defined by

equations (17), (18), and (19) is similar to the steady two-dimensional

supersonic "wing" problem in xl, tl,_ I space, where xI is in the down-

stream direction, tI in the span direction, and _i is normal to the

wing as implied in sketch 3- The downwash, as can be seen from

, - o (21)

(2o)

(19)
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equations (9a) and (19), is concentrated along the line

Xl : X 1 - n1

xI x2 - I(t2 - tl) 2= + _2 2

", ," k
\ /

\ /

x2' t2' _ 2

x 1

: tI

x I = Ay I

(wing leading edge)

"X = W(Xl, Yl, tl)

_i = 0

Xl =_ 1 - _1

Sketch 3

The curve Xl = x2 - t2 - tl) 2 + _2 represents the intersection of

the plane _i = 0 with the characteristic forecone emanating from the

point x2't2' _2"

The solution for X can now be written in terms of simple sources

X _ _l _18 fl w(x2'Yl't2) dx2 tit2 (23)

_ _ _l2SO I(Xl x2)2 (tI - t2)2 -

where S0 is the hatched region indicated in sketch 3- It might be

noted that the expression for X (eq. (23)) differs from the classic

potential given for the two-dimensional steady-flow problem by the partial

derivative 8/_i" This is due to the fact that in the two-dimensional
#

problem the vertical velocity, which is analogous to (_i) ' is
_i=0

specified on the wing, whereas, in this problem, the potential
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(X)_I -- 0 is specified on the wing. Substituting for W(Xl,Yl, tl)
from equation (9b) into equation (23) and introducing the appropriate
limits yields

2

A 2
X - - 1 _ dt 2 dx 2

By integrating equation (24) with respect to x 2 and then making the

l(x °-Yl - n
substitution t2 = tl + i - - _12cos 0, keeping in

mind that the value of the integrand is concentrated along the line

Xl = _ i- _i between

there is obtained

(2_.)

Yl - _ 2
t2 = tl + i - -- - _i

i[ _ "'Yl'tl + -

Yl- d8

(25a)

and X = 0 for all other regions. When wI is rewritten in terms of

w 0 (eq. (9c)), equation (25a) becomes
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X =
_i WO ...... _12cos d8

and X = 0 for all other regions.

Solution for the velocity potential _(xl, Yl,Ol, tl).- The boundary-

value problem defined by equations (20), (21), and (22) is also similar

to steady two-dimensional supersonic wing problem in the _l,Yl, Zl space,

where _i is in the upstream direction, Yl in the span direction, zI

is normal to the _l;y I plane as implied in sketch 4.

0

E1

/_i + _i - _2
//

1 =_'_ xl -f^' El)

i v lllllllllk\

+A- Xl + _ql -A

(a)

0

Sketch 4

E1 _ ={1 - _2- Y2

+,2)

,ff+a

_--:--x

(b)
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The solution for @ can now be written in terms of simple sources

as

@(_l, Xl_Yl3Ojtl) = __ X(_2_xl_Y2_tl)d_ 2 dY 2

(26)

and by means of equations (15) and (26)

f_ X(_2,xl,Y2, tl) d_ 2 dY 2
-,. IXl'yl'°'tl = lira <271

Si

where Si is the crosshatched region indicated in sketch 4. The cross-

hatched and hatched regions in sketch 4 are the regions where the poten-

tial ×(xl,Yl,_l, tl) _ 0 as dictated by the conditions imposed by equa-

tion (25). Integration over region S1 will yield results for pure

supersonic flow, whereas integration over region S2 (sketch 4(b)) will

yield results which contain the effects of the subsonic side and must be

,ig- 7
taken into account when 0 < Yl < Xl - 91V_-j- _"

By substituting the appropriate limits into equation (27),

_ = _l(Xl,Yl,%tl)= - iIrOBl

o_(xl,_,o,_) =___I "°

2

dY 2

dY 2

_f -(,_-_I_
Y2-Yl

rI

2-Yl

(_ i-A g-JX_ o)i + Bi_ > Yl > Xl - BlVd'- _ _

__1_ I r2,_i

d.Y 2

y2+yl X(_2, xl,Y2, tl ) d_ 2

y2-y I

x I Ii + A >-_iVynq y>o)

(28)
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where

r 0 =

r I =

r 2 =

+ +
- -Y+ X--- --|

_i_i A2 - Y2 + x

_---- lA(Xl Yl) +21_

I+A J

If the potentials in equations (28) are transformed back to the true

x',y',t' coordinates, the regions where these potentials exist are

given below and are also shown in sketch 5

For _'> O:

¢ = ¢l(X ,y',t') n

= _l(x"y"t') - _ \_-_-X/ < y < _ + _, x' > -

= _2(x',y',t ') lax' ' ,{l+ A_ x' _-_]

-l

__<y, <x _ _ kl - A]' >

and _ = 0 for all other regions.

For N'< O:

= _2(x',y',t') Ax' X'_--<y' <--+-- i + A ', x' _l' I
A _ >- A )

(29)

(30a)

(30b)

and _ = 0 for all other regions.
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X !

y' - _' = _ q' '= y'

\J : o
,,z

-- _ W/

Wing si de edge -'2 I-'_//d////_/

I , X' ,l +A

(a) q'>O

x,:
y, = _' J

Wing side edge

Ax'
y' -

_ =0 _Y'_r ! IX !

,y
,'/>% , , 1 +A)///> *n ---f

=

X !

(b) _'<0

Sketch 5

The pressure difference in terms of the physical

is given by

x',y'_t ' coordinates

ap = 2p + V 8x'
(3_)

Subsequently, a coordinate system is employed where the origin is

situated on the apex of a sweptback wing. The x-coordinate is parallel

to the free-stream direction and the y-coordinate, in the span direc-

tion. The coordinate system will also have the additional character-

istic that the Dirac delta strip will have its origin on the leading

edge of the wing rather than on the yr-axis as indicated in sketch 5(a).

If it is assumed that the potential functions given by equations (28)

and the pressure coefficient as given by equation (31) have been trans-

formed to this new x,y,t coordinate system, the lift distribution due

to arbitrary downwash distribution can be written as

I_j _Gk

Z(x,y) = f(_) API(X'y't;G) dG + f(G) AP2(x'y'tj_) d_
q q

i j

(32)
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where APl/q and AP2/q are the pressure coefficients associated with
!

the velocity potential _l and _23 respectively, and f(m) is a non-

dimensional spanwise downwash weighting function defined as

w(x,y,t) = Wo(X,t) f(y)

A method for obtaining the limits of ms will be discussed in a subse-

quent section; however, an indication of their significance is shown in

sketch 6 where mi , mj, and mk are particular values of ms

mi mj mk
y,m

x

Sketch 6

It might be noted that, in order to obtain Ap/q for use in equation (32),

a triple integration is involved: one as indicated in equation (25b) and

two more as indicated in equations (28). Therefore, in order to obtain

the loading due to an arbitrary downwash distribution, four integrations

are required. To obtain the generalized forces another integration is

required, and if a transient phenomenon is present, a time-superposition

integral is required. However, with the modern high-speed computers it

does not seem unreasonable to undertake the integration of a quintuple

or even a sextuple integral.

The remainder of this paper will deal with the evaluation of equa-

tions (25b) and (28) in order to obtain the lift distribution for a wing

oscillating in simple harmonic motion with a polynomial downwash distri-

bution in the chordwise and spanwise direction. The potential will first

be derived for the oscillating strip, whose downwash can be represented

by
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w(x',y',t') = Wo(x',t' ) 5(y' - q')

= Wo(X') e icot' 5(y' -

(33)

The potential is then derived for this strip and a frequency expansion

performed to obtain the corresponding pressure distribution. These

expressions are further simplified for the special case where the side

edge is parallel to the free stream and the downwash is assumed to vary

as x 'n in the free-stream direction. Superposition techniques are

then used to obtain the loading distribution for various wing distortions.

Velocity Potential and Pressure Coefficients

for Simple Harmonic Motion

Solution for the potentials X and _.- By assuming simple har-

monic motion, the downwash distribution as given by equations (33) becomes

- °:L= e q (3&)

when transformed to the xl_Yl_t I coordinate system by means of equa-

tions (5)- Comparing equations (34) and (9) gives

icot_

Substituting equation (35) into equation (25b) gives

(35)

Yl-ql - _12c°se

_0 _ - i -- "
_l e de

(56a)
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and X = 0 for all other regions or

Yl - _
-Ry ---_Jo - _i× _ (1)_1 l-

and X = 0 for all other regions where

(36b)

I(y _l A 2 1 i_/ _ _ iiot1w0 i--- - - _i e (37)

If the indicated differentiation is performed and it is kept in mind that
r-"

AXl + _i_I - A2 - Yl

there is a discontinuity in X along the line {I = A '

equation (36b) becomes

AXl - Yl d_(yO _. 7__ 12x .... J0 i- -_
d_1

(38)

The evaluation of potentials _i and _2 (eqs. (28)) together with equa-

tion (38) is presented in appendix A and the final results for the veloc-

ity potential (eqs. (A29) and (A30)) in the true x'_y',t' coordinate

system are as follows:

X !

_- i_{/_a
¢l(x',y ,t') - 1 ei_t ' w0(x'-_ ) e- cos m' d_ (39)

¢ _ ,)2
Y'-_'I _2 (y, _



2O

r3 -i_M_/_a

ei_t' w0(x'-_) e cos T d_

_2(x"y"t') - _ _2 (y, _ _,)2

y'-1] 'I

X !

+ _ ei_t' w0(x,__ ) e-ia_M_/_a J1 - d7

_a _ _i - 72

(40)

where the regions where these potentials exist are given by equations (30a)
and (30b) and are shown in sketch 5 and

_2 , )2T=_ -(y,-_

r 3 - + , (y, _ )A+Y Y - - '

i"-fax, \/_, _1/2
= ' _ .,'_)

r4 - .

(4_)

Frequency expansion of velocity potential and pressure coefficients.-

An analytic evaluation of equations (39) and (40) does not seem possible

at the present_ therefore, a downwash distribution

w(x',y',t') = Kn x'n eiLot' 8(y'-_') (42)

is chosen, and a frequency expansion of the integrands of equations (39)
and (40) is performed before integration. It might be noted that com-

parison of equations (42) and (33) indicates that

Wo(X') = Kn x'n (43)
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where Kn is a normalizing factor having the dimensions of velocity

divided by the nth power of a length.

The results of the above-mentioned expansion are presented in

appendix B. Equations (B5) to (B22) represent the pressure distribu-

tion for a wing with a supersonic leading edge and subsonic side edge

y' - in supersonic flow. The downwash distribution on this wing

is given by equation (42). By superposition techniques, the pressure

distribution over the entire wing for any harmonic deformations can be

obtained; however, the amount of work and time involved becomes very

lengthy. Therefore, the pressure coefficients are derived only for the

special case where the side edge was parallel to the free stream. These

coefficients are presented in appendix C as equations (Cll) to (C21)

for values of n = 0, l, 2, and 3- The values of n = 0, l, 2, and 3

represent a chordwise strip dy' of the wing at y' = _' undergoing

translation, pitching, parabolic bending, and cubic bending, respectively.

In most analyses it is desirable to have the origin on the center
line of the wing. Therefore_ in the section to follow a coordinate sys-

tem is chosen so that the origin is at the apex of a sweptback wing. By

assigning a given spanwise variation of deflection and integrating over

the appropriate region of the wing, the pressure distribution can be

obtained for any spanwise variation of deformations and up to a cubic in

chordwise variation of deformations.

Loading Coefficients for Polynomial Downwash Distribution

Transformation to a coordinate system fixed on apex of wing.- A

sketch of the wing together with the new coordinate system, fixed on the

apex of the wing, is shown in sketch 7 where k is the slope of the

leading edge and b is the wing span. Two sketches are needed depending

on whether _' is greater than or less than b/2.

X X v

By' ry'

X t X t

(a) < b/2 (b) > b/2
Sketch 7
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Inspection of sketch 7 showsthe appropriate transformation to be

X ! _- X --

y, =y+b
2

q, =q+b
2

The resulting figure showing the wing 3 new coordinate system, and the

regions where the appropriate pressure coefficients apply is shown in
sketch 8:

0 _ b/2

q

X

(44)

Sketch 8

and the downwash equation becomes

  nO t(x- n_(y-n) (45)

General loadin_ coefficients.- If the wing is now divided into

regions according to characteristic Mach wave reflections (see sketch 8)

and the downwash is given by

w(x,y,t) = KneiC°t(x - ]Yl)nh Z Asys (46)

S
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then the pressure at any point will consist of terms of the form

_j
APk / _ _, +b_As_S --_-Ix Y e' n + dn

S

_" i

(47)

where _i and _j are to be chosen according to the region in which

the pressure coefficient is to be calculated and Ap_q values are given

in appendix C. As an example_ consider the pressure at point x,y indicated
in sketch 9

_i Nj

x!

= x + _(yl- b + y)

Sketch 9

from which it can be seen for this particular case

_y - X

Ni =h
h_3+l

b =_FB_b-y)-x]_
h_ +i

The pressure at point x,y can now be written as
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s q qj

j2- )I+ ms AP2{ b b-_-kx-_,y+_, _+_ (48)

The last term has the form of equation (47) and can be replaced by

The first term

L _x+l j __

J x(_y-x)
_k+l

becomes

X[_(b-YI-_]

'L _x-_J _--_fx-],_+
J_z_

_R-I

when _ is replaced by (-h). This expression is now in the form of

inj(-x)
equation (47) and can be represented by _i| where the bar (-)

h±(-x)
is used to indicate that Z must be changed to (-_) before inserting
the limits. This definition was adopted so as to utilize the definition

of Lk given by equation (47) and thus eliminate the derivation of a

new set of equations. Performing the same operation on the second term

of equation (48) results in the following expression for the loading
coefficients at x,y.
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0 b/2

nj(-k) '0

(49)

The L1 and L2 functions are derived in appendix D for

n = 0, l, 2, and 3. The limits are left arbitrary so that the pressure

coefficients at various positions on the wing (other than the position

considered above) could be determined.

Loading coefficients for separate regions on the win_.- If the wing

is now divided into the regions indicated in figure i, the loading coef-

ficients for each region (Ii, III' etc.) can be shown to be

(5o)

/II = L1

n2 ,b/2

no 112

(sz)

I I i' I °-'ll
n2 nO Ib/2 o

_III = LI - _i + L2 = ZII + LI

0 0 n2 0

(52)

n2 ]o [b/2
no ',-12 0

(53)

/v=LI

0

+ LI

no

nl

= II - /II + /III (54)
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where

0

IVi = L1 + L1

n3

213IbJ+ _2 + L2

0 -b/2 n2

(55)

(56)

_(_y - x)
no = _X - i

_(_y + x)

_A+l

_2 = IB)x- 1

+

(57)

and the values of LI and L2 are given in appendix D as equations (Dll)

to (D18) and, as pointed out previously_ the bar (-) indicates that

must be changed to -_ before substituting in the limits.

RESULTS AND DISCUSSION

The integral expressions for the velocity potential and pressure

coefficients associated with awing with swept supersonic leading edges

and arbitrarily swept subsonic side edges, deforming in any general time-

dependent manner 3 are derived herein. The expressions are simplified by

first assuming harmonic motion and then expanding to the third power of

frequency. The special case is then treated for which (1) the side edge

is parallel to free stream and (2) the oscillations are such that the

distortion of the wing can be represented by a polynomial of any desired

degree in the span coordinate and third degree in the chordwise coordinate.
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Calculations are made to obtain the total lift coefficients for two

wings - a 50 ° delta wing and a rectangular wing of aspect ratio 0.8 - both

flying at a Mach number of 3.0. The wings are assumed to be subjected

to continuous sinusoidal gusts and to harmonic sinking oscillations. No

spanwise variation in downwash is considered. This analysis is presented

in appendix E and the final results are tabulated in table I. As can be

seen in table I, the results are in good agreement with those obtained

by using reference 14 for reduced frequencies at least as high as those

indicated in the table. It might be noted that the results for the wing

in a sinusoidal gust are not as good as those for a wing undergoing har-

monic sinking oscillations. It is believed that this difference is due

to the fact that the sinusoidal gust wave is approximated by a cubic in

the chord direction, whereas the downwash for harmonic sinking oscilla-

tions is exact.

CONCLUDING REMARKS

The integral expressions for the velocity potential and pressure

coefficients associated with a wing with swept supersonic leading edges

and arbitrarily swept subsonic side edgesj deforming in any general time-

dependent manner, are derived herein. The expressions are very compli-

cated_ however, with the modern high-speed computers it does not seem

unreasonable to undertake such a task. As a possible check the equations

are simplified by assuming simple harmonic motion and expanding to the

third power of frequency. The special case is treated for which the

side edge is parallel to the free stream and the oscillations are such

that the distortions of the wing can be represented by a polynomial of

any desired degree in the span coordinate and third degree in the chord-

wise coordinate.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Station, Hampton, Va., August l, 1962.
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APPENDIX A

REDUCTION OF THE VELOCITY POTENTIAL EQUATION

WITH APPLICATION TO A RECTANGULAR WING

Reduction of Velocity Potential Equations

The velocity potential as defined in the text by equations (28),

(37), and (38) will be treated in six parts as indicated below. From

equation (38), let

X(_l, xl, Yl, tl) = Xl(_l, Xl, Yl, tl) - ×2(_l,Xl,Yl,tl) (_)

where

Xl(_l,Xl, Yl,tl) = R(Yl)8(_ I

×2(_i' xl'Yl, tl)
/ \

= R_Yl]_-7-- Jo 1 - - _l

(_)

By substituting equations (A1) and (A2) into equations (28) and defining

the quantities

el(_2,xl,Yl,tl; Y2) =

X I (_2, Xl , Y2,tl)

I_22 - (yl- y2)2

82(_2'xl'Yl'tl; Y2) = ×2(_2'xl'Y2'tl)

t_22- (yl- y2)2

the velocity potential of equations (28) can be written as

(A3)

L

5

3
0

_l(Xl'Yl'0'tl) = _ll - _12 (A4)
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_2(xl,Yl'O'tl) = _21 + _22

_21= _2n - _212

_22= _221- _222

(ASa)

(A5b)

(A5c)

where

_ro fl

i dy 2_li = - 7 E)i d_2

i J Y2-Yl

(A6)

rO _ rl
i dy 2 02 d_ 2

(A7)

 fro_211 - _ dY2 01 d_2

2 2-Yl

(AS)

Jr rO S rl

I 82 d_212= - 7 _Y2 2
2 2-Yl

(A9)

_221 - - 7 dY2

i J Y2-Yl

(_o)
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1 f r2 I y2+yl

¢222 - _ _Y2

l/1-_ d Y2-Yl

and r0, rl, and r2 are defined by equations (29).

e2 d_2 (&u)

_2 =

Since the area of integration does not include the llne

AXl + qlV1 - A2 - Y2

(which is the argument of the Dirac delta),A

_221 = 0 (A12)

After the integration with respect to

be represented by

_2' equations (A6) and (A8) may

_rj

J ri

By transforming equation (A13) to the true x',y' coordinates by means

of equations (5) and making the substitution

Y2- _ +TI +

equation (A13) becomes

_/_ -_--_
1 eiLOt ' w0(x'-_ ) e 8a&

V_2- (y,-q,)2
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With the appropriate substitutions for ri and

equations (A6) and (_) become, respectively,

U it can be shown that

x'/8_11 - 1 ei_t ' Wo(_X'_-lB2! e d_ (A16)
_f

O _(y,_n,) _2 - (Y' n') 2

2 /_' y)_(y,__ )

1 ei_t' Wo(X'-_) e d_ (A17)

_211- _ W2 (y-_- , ,)2
J -(y,-_')

In order to reduce equations (A7), (Ag), and (All) the expression

i Y2-Yl

Y2 " _

d Jo Xl - - _2 2

d_2 d_ 2

_2 2 - (yl - y2)2
2-Yl

will be used to represent these three equations. By means of the

substitution

2 2 = 1 - Y2 - q

(A_8)

(]LI-9)

equation (A18) takes the form
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1 R(y21_2

2

Y2" _l_l " A'_I -

Yl - Y21

(A20)

which, after transforming to the true x',y',t' coordinates by means

of equations (5) and making the substitution given by equation (AI4),
reduces to

^ 1
r_ o __,___(___)

_m i _t' _o(X'-_) e "_a---4 a 2 ,

{_2_ (y, _ _,)2 7

rk Jl - (Y' _') 7 9
- - .1 -

= _ ei_t' Wo(X'-_) e d_ d7

_a 7
r

An expression that will be needed later is that for _k = i

second integral in equation (A21) becomes

where

_--_W___,,-_,_

By letting 7 = sin 8, the integral (A22) becomes

/0 n/2 Jl('r sin 8) de

(A21)

the

(A22)

(A23)

(_4a)
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which is evaluated by Watson (ref. 21, p. 374) and is given as

By substituting the appropriate values for ri, rj, and rk into

equation (A21), it can be shown that

_ 1 eimt' w0(x'-_3_) e ;3a (i - cos T) d_ (A25)

¢12 _ II _ (y, ,)2

r3 "_mM_

_a

i i_t' W0(X'-_ ) e (i - cos T) dE (A26)

= - - e J
T) 2

x '/_ _0r4
co ei6Ot ' Wo(X'-_ ) e _d_ d7

r3

(A27)

where

r42 = (I- A2)_ 2 - (y'- _,)2_

(pe8)

Consequently, if equations (AI2), (AI6), (AI7) , (A25), (A26), and (A27)

are substituted into equations (A4) and (A5a), the resulting form for

the potential is



3_

_l(X',y',t') - i ei_t '

L_M

_o(X'-P_;) e - _--i--_ oo_

_f:2_ (y,_ _,)2
(A29)

¢2(x',y',t') = - A e_t'
3 Wo(X'-lB_) .

e COS T

'-_'l _/_2-_(y, _ _,)2

+ _ ei_t '
d7 (A30)

Application to a Rectangular Wing

It might be noted that, as A approaches 0, equations (A29) and(A30) become

_ i ei_t, if'

!

_L___
Wo(X'-p_)e #a cos T

(A3L)
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(_2)A= 0 = - i eiz_t' w0(x'-_ ) e 8a cos T

'_ J ly'-'_'l V-_'2-(Y'- '1')2

d_

x'/6 2_(y,_q,) Jlei_t' w0(x'-B_ ) e - _a-_ d_ / (T 1-_) d7 (A32)

+ _-_ _ y,+_, _0 _- 72

It is now desired to find the potential for a rectangular wing for which

w(x',y',t') = Wo(X') eiL°t' Since equations (A31) and (A32) apply only

for a downwash strip in the free-stream direction at y' = q'# these

potentials must be integrated with respect to q' over the proper limits.

From an examination of sketch i0

, , q'=-x + #(y + )_

! !

=x - #(y' - _ )---

f
f

C "

j)'.. /
v

! f

x y, __x + y,
_ , ,
I _q ,Y

f

f

f _k_ f T r" _ =_ + _(y - n )
J

! I

x ,y

x _

>(

Sketch i0

the potential for the rectangular wing can be written as

y, +X'

Cx,< y, (¢1 --o
I X,_ L

13

(A33)
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X T

_y'

(A_)

An evaluation of the integrals in equations (A33) and (A34) will yield
the results given by equation (15) of reference 10.
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APPENDIX B

FREQUENCY EXPANSION OF THE VELOCITY POTENTIAL

AND PRESSURE COEFFICIENTS

Substitution of the downwash wO(x' ) = Kn x'n (eq. (43)) into the

expression for the velocity potential _l (eq. (39)) and expanding the

integrand in powers of frequency_ and integrating yields the following

results (where the primes have now been omitted from x, y_ t_ and _)

_l(X, y,t) - e_tKn _(-_)Php_

p=O

(BI)

where

hp =

_12_ n - )s+p r

_, i _ (-l)Sn1(_,y I],

r=O M2r(2r)1(P- 2r)l s1(n- s)!s--O m--O

-i x ly-nl s+p- n¢Np = xn-s cosh de

JO

( -l)mrl

(r - m) Iml

(B2)

ciated with

6D -----m

V_ 2

is the integer part of p/2.

_i is

(B3)

The pressure coefficient asso-

AP 1 eiCOt AP--_ 41_ 1 _l 1

-4-= q i (B4)



or

and

m

z 1AP 1 4
Kn (-i_)P -i_)-_ Np- Np (B_)

q _V
p:O

xn-S(x
_p _ n - s Np+ _ly-_I (n_ O)

Np' =dx x

_x2 _ p2(y_ 71)2

x )p- 2m
PlY i al (n = 0)

Np, _x_ - _2(y_n)2

Similarly, equation (40) can be expanded to give

Z_P21

q--= 4_V Kn (-i_)Php -i_)_ Np -

p=O

(B6)

(B7)

m

_P22- 4(-i_)2Knq _V _ (-i_)m _ _'m- Jq + gm-qFq ' - _(-i_)gm-qFq_

m--O q=O

where the prime indicates differentiation with respect to x, and

w

Ap2 = AP2I + Ap22 (B9)

_0 c°sh-i L(I+A) (y-Tl)
(BlO)
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gm-q = -

4M2(-A)n+l(m- q)I - A2

(BII)

2 n

Zb -2k k7,
k =0 s=0

CsGq-2k, s,k
(BI2)

_ q+s + 1
Gq, s_k r5

(BI3)

i - A_(r5 - I+A

bq
ql

(Bi4)

(BI5)

C S =

(_l)SnlN n-s

sI(n - s)l

(Bi6)

2k

(BI7)

fo(_)= i (Bi8 )

(Bi9)

f2(ll) = 2 I - Y 71/z2 +
(B20)
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i - A2

(B21)

+

z2= T
A

_ (y _ _)2 (B22)

With the limited number of fk(_) functions given (eqs. (BI8) to (B20))

equation (]38) can only be expanded to the fourth power of frequency.
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APPENDIX C

FREQUENCY EXPANSION OF PRESSURE COEFFICIENTS

FOR SIDE EDGE PARALLEL TO FREE STREAM

Since equations (BS) and (B7) of appendix B are independent of the

slope A attention need only be given to equation (B8). However, since

_P22 lj was evaluated by using
singularities exist in equation (B8), q _=0

the second term in equation (A32) of appendix A. The resulting equations

are (where the primes have been omitted from x, y, t, and _)

E 1AP-2 = Kn 4_ Y_(-i_)2 (-i_) q -i_)_ Hs, q,k - H' (Cl)q IA--0 _M2V s,q,

where the prime indicates differentiation with respect to x and

2 n

Hs, q,k = Z aq_2k Z Cs dkKs, q_2k,k (C2)

k=O s--O

n-s Z x _q+s¢k (
Ks,q, k = x o) da

(Y+_)

(c3)

1 (c4)

(-l)Snl (C5)

cs (n - s)Isl

2k

%(_) = i (c7)
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_l(d) = - t(z222 (c8)

%(_) _ l
2131 (z14 8Y_3 z12 + _) (C9)

z12- 1 I_2- 132(y - rl)21 (ClO)

Evaluating the above expressions for values of n = O_ i, 2_ 3

retaining only terms to the third power of frequency_ the following

_esults are obtained. In the following equations u = _IY - HI and

u = _(y + _).

and

For

q

n = O:

4 KO i i_ -- cosh- x +

_ 2_ u2 M 2 u Vx2_ u2

[2(_-6__ - 3)-
3M4Vx 2 _ u2

L 3u2(M4 - 2M 2 - i_I 1
(Cll)

_P2±

q
K 0 _ i_____2 [ _2132

u M2

i_3_2_2_oos_-__+(M2+1)_2_]1-_ u
(C12)
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For

q

AP22

q 4 K0 _ co--2v V_

n=l:

4KI_vI °sh-I

x _F_ - x_<C__u_]
u - _-2L__2xc°_h-z-u+ (_2 _ z)

+ __2_2E3_2u2oos_-1x + (M2- 3)x_]
4M 2 u

(cz3)

(c__4)

AP21

q
_ osh-i [ mm _2x cosh -I u + 2242 1 2_

_V u M 2 u

+3._- 3)__- (_6_. _.._+6)u_])) (cz5 )

z_P22-q 4K1 _ -_2_V _ _ y_(x- G)+ i_ 2_,y_(x_ [)Ex + (2M 2 - 1)_j

(C16)



II

0

_1_

0
¢J

I

Od

+

Od
¢D.

O,J

I

I

I

%

I

_I_

I

0

._- |N

!

II

I

04

OJ

+

Cq
_4

!

Oa

+

I
,.el

O
¢J

OJ

Od
c_

+

I

0.1

+

v

O'_

+

0,1

!

oO
v

I

od
X

I

O4

I

v

+

tx:1

O
o

r"N'-n

I

OJ

+

0,1
N

Oa

_3
-,-.I

I

I

!

X

!

Od

t;
Cq

+

,_1 ::l

O

!

Od

+

N
Od

I

!

_I_

i

o
o

!

II

I#I

Od

Ol

OJ

!

+

OJ

+

TM

I

OJ

Ok/

+

,_1_

¼
O
o

C_

OJ

Od OJ

+

I

+

v

+

oJ

Oj t

+

Culo_

I

LO

+

_1 :_

,--4

(/1
O

,---t

i

OJ

+

r_

+

I

u'N

+

+

04

,-H

I

Od I O",



45

z_P22 4K 2 _2 + :!.z_3
q =-_ _ _7(x-_)2 _ _7(x-_I2 ÷(3M2-_)

(C19)

For n = 3:

_Pl _K3_ _ _ _-2 _2x3+ _ x--4-=-_ t_2+ _o_h-1_x_3_ - _ (3M2 z)3_u _o_h-I

+ _T,__11)x_+4(_- _)u +_ + - u

- _ _u_ _2_+3(5__ - 1)u _o1_-1u

+ x2_'2--__u2_(M4 - 6M 2 - 3)x 4 - (159M_ 27_M2 + 83)x2u2 _ 16(8M _ _ 8M2+ l)u_]_ 1 (020)

-T-=- _\@_ ÷ _u 3_ __ x _2+3(3M_-i) ooo_-__ 2_ (_ _)x_

+ 3 3 u + _ z6L

+ 2_ Y_-_ 2x3 - 3(3M2- i)X2_ +2M2xu24 + (4M2 - 3)xu2 DM2 +lu38 - 3(5M2 - 3)uu2])16

- _-\-_6--L- + _(_2
28_]_ - 1 x3_ h_ + 3M2 - 3 x2_2

_+ L_ 6

+ 5 MA + 6M 2 - 3 x_3 _ 2.144 + 3M 2 - 1 _ 8M 4 - 12M2 + 3 x2u 2 + 3(9 M_ - 6M2 + 1) x_u 2

8 lO 6 16

30 z5
( C21 )

T--_-T- _ +_--_#7(x-_)3 _
(C22)
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Equations (CII) to (C22) now represent the pressure distribution

on a wing (in supersonic flow) with a supersonic leading edge and a

side edge parallel to free stream for which the downwash distribution_

as mentioned previously (with primes omitted) is

w(x,y,t) : Kn ei_txn 5(y-h) (n = 0, i, 2, and 3)

The values of n = O_ i, 2_ and 3 represent a chordwise strip of the

wing at y : G undergoing translation_ pitching_ parabolic bending 3

and cubic bending, respectively. The wing and the regions where _T/q

apply are presented in sketch ii.

_P=o

q

Wing leading edge

AP 2 /kp21 AP22

q q q

Sketch ii
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APPENDIX D

EVALUATION OF EQUATION (47)

Equation (47) as given in the text is restated here for convenience.

The two forms are

(D1)

I _ AP2I + bL2 = L2 = A s ms-_-_x-_, y q+ d m

mi i

(D2)

Examination of _ll/q in equations (ell), (C14), (C17), and (C20)

indicate the presence of two particular integrals Is and Qs which

are associated with L 1 and will be defined as

_mj ms dm

Is = (D3)

i x-_ _ _2(y_ m)

_mj m

x - y am (o4)
_s= (Y- mlSc°sh-1_ly - ml

i
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where

I0 = sin -I
(_:,_>,__,x)-(_:,_- _.)_I'_j

I
q=_i

(o9)

- I xl {(x_ - _i)2 - p2_2(y_ _)2i 'lamJ-= #X> - I
_q_qi

Io (06)

For s _- 2

I S =

and for

+(_-_I(_- _x)i___-_(_-_I(A_-x_)i___]
s>=2

=- (y _ q)s+l,,cosh -I x - _ + hx - y slyS-r(-l) r IrQs
s + 1 pjy- nj x(s+ l) ri(s- r)i

r--O
=Gi

(D7)

(DS)

m__<=,in,<t_ono_thee_ressionsfor _ _ _ gi,,ooi,_ap_on-
dix C indicate the presence of two particular integrals R s and Ps

associated with L2 and will be defined as

S

R s = - h - _ d_ = -\_ + 3 (D9)

s 2

i q---"q::I.



49

_j
Ps = (Y - _) sc°sh-I b - y - _ d_

i ly-_I

cosh-i b - y - _ +
s +i

s + i 1y - _I _=_i r=0
rl(s - r)1

Rr_l

(DIO)

By substituting equations (CII) to (C21) into the appropriate

expression for LI or L2 and using the quantities defined by equa-

tions (D3), (D4), (D9), and (DI0), the following equations for LI and

L2 are obtained.

For w = Koeimt _ AsyS:

L 1 = _ __

aK0
__ As - i_ Is _ Is+l _ r1(s- r)l +_-_ 3)x2 _2y2(2M2 Is

_V s
r--O

2_ i_3 A-_t_ _ s l_s-r(-1)r Qr+2- _ (M2 - 3) - 2_(2M2 - 31Is+l + rM2 - 3 - _2(2M2 " 31Is+ - rl(s r)lLT _ _ _-_o -

s-r

[ (.L2 = - _ As -_- _ -_ _ Pr + M2 _ rl(s - r)! Rr

r--O r=O

(Dll)
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2:_.2 y2

+ Is+ 3 +

(D13)

(Di_)
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APPENDIX E

EXPANSION OF DOWNWASH FUNCTION

Rigid Wing in Continuous Sinusoidal Gust

In order to utilize equations (DII) to (DI8) for a wing in a sinus-

oidal gust, it is assumed that the downwash w = woe i when expanded

to the third power of x, will adequately define the gust. Although,

in general, this is not true, a very good approximation to the gust func-

tion can be made if the reduced frequency k is restricted to permit

only a third of a wavelength of the gust to be on any chordwise strip

at any instant of time. This restriction on k is not unduly severe

since for most analyses the useful frequency range is well within the

limits stipulated.

On the basis of these assumptions, the downwash can be rewritten
as

W = WOe

where

ira(t-v) woei_te-ihxp _ w0ei_t(l _ ihp x h2p2x2 + i h3P_ 3_I= 2 x (El)

hp =--. By means of the following identities,
M2

equation (El) can be rewritten as

w = woe_t 1 - ipy - _ + i

+ x-g 2 + +--g- -

3y2 #x

(E2)
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Examination of equation (E2) and equations (DII) to (DI8) shows

that for a wing in a sinusoidal gust the values of As can be defined

as follows:

for equations (DII) and (DI2),

A0=I

AI = -ip

_p2
A2 - 2

for equations (DI3) and (DI4),

A 0 = -ihp

AI = _p2h

for equations (D15) and (DI6),

ip3Z 2

AI - 2

and for equations (DI7) and (DIS),

ip_3
AO- 6

Here the unit of length associated with Kn was chosen as one so that

Kn _ w0 _
= i. On the basis of these values of As, the problem was

V V

set up on the IBM 650 data processing machine to retain only the third

power of frequency. For example, in equations (DII) and (D12) all the

terms in the bracket were retained for s = 0, whereas only the first

three terms for s = i_ the first two terms for s = 2_ and the first

term for s = 3 were retained.
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Oscillating Rigid Wing

This abbreviated program is not restricted to repeated sinusoidal

gusts. For example, for _ wing undergoing sinking and pitching oscilla-

tions, the downwash can be written as

w = eiC°t_Vc_ + h + i_(x- Xo)_ _

= Vei_t + V V + _ y + -WA

where,for equations(Dll)and (D12),

(E3)

AO = c_ +
ia_x 0

V V

and for equations (DI3) and (DI4),

=-V

All other values of A s are zero. Again the unit of length associated

with K n was chosen as i; thus, Kn/V = i.

Application to a Delta and Rectangular Wing

Limited forms of equations (50), (51), and (54) have been programed

on the IBM 650 data processing machine. The amount of information pro-

gramed was dictated by the form of the downwash function for a wing in

a continuous sinusoidal gust field as indicated by equation (E2). In

order to check out the program, calculations were made for two wings,

a _0 ° delta wing and an almost rectangular wing of aspect ratio 0.8,

both flying at a Mach number of 3.0. The tangent of the leading-edge

sweep of the almost rectangular wing was 10 -6 instead of zero, since

for h = 0 singularities arise for which no provisions were made in

the program. The position of the points for which the pressure coeffi-

cients were calculated was determined by means of a Gaussian distribu-

tion formula.

Four semispan stations were used and each region along a chordwise

strip was divided into three stations. This procedure allowed for
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calculating the pressure coefficients at 18 points on the half-span

delta wing and 21 points on the rectangular wing as indicated in

sketches 12 and 13.

" _ .

• _ •

by

• j
• f

f •

#*

f

f"

f

_f
f

f •

x x

Sketch 12 Sketch 13

This procedure for positioning the various points permitted the use of

a fifth-degree (three point) Gaussian integrating formula for each chord-

wise region and a seventh-degree (four point) formula spanwise to obtain

the total lift on each wing. In table I the results are presented for

a 50 ° delta wing flying at a Mach number of 3.0 in a sinusoidal gust

field• As can be seen, the total lift coefficients are in good agree-

ment with those obtained by using equation (67) of reference 14 for

values of reduced frequencies at least as high as those indicated in

the table.

As a further check, the total lift coefficients for a 50° delta

and an almost rectangular wing of aspect ratio 0.8, both at a Mach num-

ber of 3 and undergoing harmonic sinking motion (_ = 0 in eq. (E3)),
are also presented in table I. The results obtained for these cases

were in very good agreement with those obtained by using equations (66)

and (71) of reference 14 in the same frequency range.
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Figure i.- Sketch illustrating the various regions for which pressure
distributions have been derived.
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